April 12, 2013

Who’s Minding The Store?

It has been said that the French love Jerry Lewis.  Books have even been written about it (well, at least one book).store   I would not presume to question French culture…however even Jerry’s old partner Dean Martin sang “Everbody loves somebody sometime…”

Still, when French scientists need to automate ‘cell culture‘ and other time or temperature sensitive assays, they (and researchers from many nations) require automated storage devices (…all that for a ‘store’ reference?)

One of the more common instruments that enable extended walkaway time (the ability to automate multiple plate runs of any given assay) is the automated incubator.  Actually, the term incubator is a bit on a misnomer as these “plate hotels” can have a variety of temperature and/or humidity ranges that enable their use in a wide variety of assays.  To further complicate that definition, said plate hotels can also be used to store plate lids, tip boxes and tube racks.

Ambient – Perhaps the most common of all plate storage devices, ambient hotels can be as simple the removable storage racks found on plate mover robots such as theCaliper/PE Twistetwister iir II or the PAA KiNEDx or even dedicated plate stackers like the Thermo FisherRapidStak.   Many plate reader companies (Molecular DevicesBioTekBMG Labtech…etc) also offer dedicated ambient stacker options.   Additionally, Liconic,  , Agilent,Hi-Res Bio and Thermo Fisher(Kendro/Hereaus) also offer stacker hotels with built-in elevators/plate presenters that are also used in their temp/humidity controlled devices.   Hi-Res Bio also offers the PicoServe for robot arm access.  For the most part, users only need to consider if their assays require random access of individual plates or stacked storage (one plate on top on another).  Stacking plate racks follow what is known as a LIFO or Last In, First Out paradigm.  This is great for empty plates that will be fed into a system for simple tasks such as plate replication or reformatting.    Some folks even use this as a means of eliminating lids, as the plate above acts as the lid for the plate below – top plate is a blank).  Random access racks (individual plate holders) are great for assays where you need to treat each plate uniquely such as hit picking or ELISA.  Plate racks come in portrait or landscape orientation and some devices allow for bar code verification or delidding options.

Heated/Cooling – Options start to become more limited when you need environmental control.   Small batch options include self-contained single plate devices froIncubator_Family-09-2011_02_056bb39b14InHeco, which can be stacked on top of each other as well as recirculating fluid locaThermal-Plate-Stacker-Part-STKRtors fromMéCour.  MéCour also offers a recirculating fluid jacket for Twister II racks.  For more than a handful of plates, there are three well established providers;

  • Liconic – For well over a decade, this little juggernaut from Lichtenstein has created a formidable offering of products, all designed for liquid handler or robot manipulator access.   They also offer ambient hotels that utilize many of the core components used in their environmental models.  The range of products covers just about any application you can come up with!  Just a word of caution, depending upon the age of the instrument, you may find that there are design variations that can make post sales support challenging.
  • Thermo Fisher -Thermo acquired Kendro in 2005 and carried on the Cytomat/Heraeus (and Sorvall) product lines.   Originally, the Heraeus products were co-developed with Liconic and shared many common components and needs, but more recepicoservent products are of a completely new design.
  • Hi-Res Biosolutions – a relative newcomer to storage, but a very impressive line of products ranging from the 8 position Plate Chill cooled racks to high-capacity plate or tube storage.

End users, OEM’s  and system integrators have a wide variety of choices when it comes to extending assay walk-away time.   The French may indeed love Jerry Lewis but researchers love having time to perform higher value tasks due to the reliability of plate storage devices.

April 5, 2013

A Robot By Any Other Name…

A number of lab systems incorporate robot arms to manipulate consumables (plates, lids, tip boxes, troughs).   Robots, insofar as lab automation is concerned, can be broken down into three categories:

Liquid Handling Robots- Ten years ago or more, if someone in thTecan EVOe lab was talking about a robot, chances are they meant a liquid handler.   Not surprising, since most liquid handler are essentially XYZ robots.  However, unlike their more generic cousins which are used in industrial manufacturing applications, these robots have evolved into application-specific workstations.  That is to say, they come pre-tooled with everything that is needed to perform plate preparation applications.  Even their software is specific to these applications.

Industrial Robots- When moving consumables  off the liquid handler deck, to peripheral instruments (readers, washers, storage…etc) a number of lab systecaliper-staccatoms are built around industrial robots from established companies such as Staubli Robotics,Mitsubishi Electric and Epson Robots.  These robust and increasingly affordable robots were once the exclusive purview of industrial assembly lines or semiconductor manufacturing.   Smaller sizes and lower costs have resulted in widespread adoption by integrators such as Hi-Res BioPAA andCaliper Life Sciences (PE).  Out of the box, these generic devices are not much more than building blocks – requiring tooling (gripper hands/fingers, storage devices, sensors and a good deal of programming and teaching to make them manipulate lab consumables.    However, once tooled up and programmed they are reliable workhorses that require little, if any maintenance.

Plate Mover Robots – Zymark (now Caliper/PE) was one of the first companies to come out with robots dedicated to plate movement.   The Twister plate loader was essentially a miniature version of an industrial cylindrical robot – meaning it’s work envelope was twister-7900cylinder shaped instead of rectangular, like XYZ robots.  What made this robot unique is that it came with microplate gripper and fingers, as well as removable plate storage racks.   My good friends Rick Bunch and Brian Paras did a masterful job of marketing this product (over 3000 were sold) which became the de-facto standard for loading instruments for nearly a decade.   Soon, improved varients emerged such as the Hudson PlateCrane EX, Zymark (PE) Twister II, Thermo CataLyst Express and more recently Peak Robotics(now PAA) KiNEDx/ProNEDx/BiNEDx and Precise Automation PreciseFlex all capable of tending to several instruments (Twister was ideally dedicated to one instrument).  Additionally, unlike industrial robots which generally come with sophisticated controllers with multi-tasking operating systems and proprietary programming languages containing huge command sets with an endless syntax permutations,  plate mover robots come with build in controllers (no separate box or umbilical cords) and a concise command set that is optimized around moving microplates.   Finally, the platemover robots have found dual use as instrument loaders as well as becoming the hub of many integrated systems just like their industrial counterparts noted above.

Last words:  Both liquid handling and plate moving robots are well within the means of many labs both in terms of price and functionality as well as ease-of-use.   Industrialbroken_robotrobots are best left to those with deeper engineering resources or professional integration firms.  Since this is a blog about support…the same holds true in that many labs or third parties are capable of supporting liquid handler and plate movers however, not many  (including integrators) are truly capable of services industrial robots.  That is a task best left to the robot manufacturer.

March 26, 2013

Nervous…System Support

My last post about standardization and open source scheduling software for integrated systems got me thinking more about the post-sales support sidon knottsde of those systems.

As many of you know, systems can be very expensive so end-users are making critical decisions on behalf of their employers, both on how well their money is being spent and what are reasonable expectations as to when the system will begin to show a return on that investment.    There is always concern about that ramp up time and the problems you may encounter along the way, so the question of warranty becomes very important to the lab manager or principal user of the system.

Most system integrators go through a very similar process regardless of who the end user is.   It generally all starts with a customer needs assessment, whereby a sales mabiocelnager (usually accompanied by an Application Scientist) asks a number of questions prior  to generating a system concept proposal.   While it may seem tedious to the end-user, (I know what I want, why can’t these people just give me their quote?) this is a critical step in ensuring long term success.   I have been involved in a number of situations where a customer had budgeted hundreds of thousands of dollars but could not provide a single manual method they wanted to automate.    Not good.

Weeks (more like months) after  the system is designed/proposed and agreed upon/purchased by the customer, a date is usually scheduled for a FAT (factory acceptance test) whereby the customer visits the integrator and goes through a “buy-off” checklist prior to shipment.  This buy-off is best done with beckman systemthe actual customer methods (minus real chemistry) to ensure that the system performs as agreed upon prior to shipment.   Remember, shipment means breaking down the system and packaging so that it can be “re-integrated” yet again upon arrival at the customer site whereupon it goes through the SAT (site acceptance test) which is basically the  same buy-off as the SAT, albeit with actual chemistry.   Once completed, you get a handshake (maybe a hug if it goes really well) and “TA-DA !”you own the system.

Most integrated systems come with a one year warranty.  This can mean different things to different integrators but in my experience, entails parts and labor only (travel is nostaublit included).  It also does not include operator induced failures like crashing a robot into an instrument.  In general, most systems include a fair number of third party instruments that the integrator does not manufacture and they don’t make a lot of money providing them.   These instruments come with their own warranties (usually 1 yr) and the integrator almost always passes these on to the end-user, acting as the first point of contact if a failure occurs.   Since the instruments can often reside at the integration firm for several weeks prior to FAT,  it is important for end-users to understand their warranty…’what is covered?’, for how long?’ and ‘when does the clock start ticking (upon shipment, acceptance)?’.

As mentioned in prior posts, an extended warranty for an integrated system can often cost 10-15% of the purchase price of the system.   Some integrators offer an incentive (discount) if you purchase such an extension with they system, or prior to expiration of the standard one year warranty.   Should you choose that option?

In short, the answer is no and I will tell you why.   Let’s assume we are talking about a $350K ELISA system that includes a robot mover, bar code reader, liquid handler, plate washer, ambient storage hotels and plate reader.    Those majorbeckman systemcomponents probably account for less than 50% of the price of that system.   The remainder is comprised of  things that don’t wear or break (system tables, enclosures, scheduling software, PC and …labor).   That last one is a biggie.    Integration is hard work and proper design, build, programming and testing prior to  SAT can include hundreds of person-hours.  That is commonly referred to as NRE or non-recurring engineering.   A warranty for such a system could cost upwards of $50K, or more (not including travel) but you really should only care about the instruments…not the other stuff.

So, if you are faced with a decision regarding extending the warranty of your integratedautomateitsystem…push back.  It’s pretty easy to determine the list price for each instrument in a system and request a contract that is based on just those costs.   You could also go directly to each manufacturer and request contract pricing on their product only.   If that is too time consuming or a management hassle you don’t need, you may want to reach out to one of the major MVS (multi-vendor services) providers (ThermoPEJohnson ControlsAgilentGE) or smaller ISO (independent services organizations) like The LabSquad.

Don’t be nervous about system support…be informed.

February 27, 2013

Aye Robot...

scottyThe first lab robot was introduced bzymark logoyZymark Corporation in 1982.   The Zymate robot was used to move labware between various instruments in a ‘pie’ shaped work area, simulating the same procedures followed by theoreticallyhigher priced lab researchers and their assistants.  Fast forward 30yrs and the term lab robot can be further applied to several unique devices;

  • Liquid Handlers – XYZ robots that pipette reagents, some can move plates usinbravog gripper hands.  These devices can pipette in a variety of ways from one single channel, 4-12 channels for row or column work or 96 or 384 channels for whole plate transfers.   Some liquid handlers are used as stand alone devices (islands of automation) and can also be found as the central components on larger automated systems which provide extended walkaway time for users.
  • Plate Movers – Essentially bench top robots that are specifically designed to transport KiNEDxmicroplates.  Unlike more flexible industrial robots, these units are pre-tooled for handling microplates and  come with plate gripper hands and plate storage racks.  Plate Movers generally have a simple software interface for teaching plate locations so users don’t have to deal with the vast command sets that come with more flexible robots.
  • Industrial Robots – While designed for a host of applications from electrical/mechanical manufacturing to painting, weldinstaublig and sorting, a number of industrial strength robots can be found at the heart of fully integrated systems.  Generally chosen for their extended reach, these highly sophisticated devices use a small subset of their potential for moving plate between storage devices and instruments at slower speeds than might be found in other applications.

All of these devices are approaching commodity status is the life science markets (drug discovery, genomics, proteomics…etc) which means that their prices are dropping and their ease-of-use is increasing, resulting in faster adoption and deployment.   And while it may be obvious to most,  several of the main reasons for automating lab applications remain constants over time;

  • Increased Throughput – process more samples without human intervention.  This makes lab workers more productive by freeing up time to work on other critical tasks.
  • Repeatability – many lab techs can pipette just as good as any liquid handler, however pipetting is time consuming and its repetitive nature can make it an error-prone operation.   Liquid handling robots largely eliminate human variability and human error, resulting in more reliable data (that’s the whole point of an assay, n’est pas?)
  • Human Safety – Operator exposure to dangerous pathogens, reagents  or radioactive chemistry can be minimized with automation.   (think the garlic smell of DMSO to skin exposure…maybe not life threatening, but certainly a potential social stigma…)
  • Assay Integrity – While human safety is a major concern for many labs, protecting assay integrity  is equally important.  Environmental enclosures around automation helps minimize assay contamination due to human interaction

For more information’

Liquid Handlers;

Plate Movers;

Industrial Robots;