July 24, 2015

About My Lab... Part 1 - The Questionnaire

 

Okay, let's make this one simple...

Click HERE to answer a few brief questions about how your lab approaches instrument support.

All info is confidential  We will publish results in an upcoming post.

Shortest darn blog all year...

 

August 7, 2013

Lab Instrument Support Survey

New MVS Survey

Oh behalf of HTStec, The LabSquad is pleased to inform you that their latest survey titled "LAB INSTRUMENT SUPPORT STRATEGIES TRENDS 2013" is now underway. 

"Proper maitl_files/labsquad/blog_images/Survey/Survey/survey.jpgntenance of laboratory instrumentation is an important consideration to ensure that lab assets remain available to researchers. Minimizing downtime makes the research process more efficient. A variety of support options are available from original equipment manufacturers (OEM), small third party independent service organizations (ISO), large multi-vendor service (MVS) providers and internal support staffs. Understanding the needs of lab users is essential for service providers to ensure customer success."

If you count on your lab instruments being in 'research ready; condition, please take a moment and fill out this most important survey.    JUST CLICK HERE

July 23, 2013

Motor Madness - Part III (...and final, I promise)

tl_files/labsquad/blog_images/Motor Madness/dumb.jpgServo Motors

In the last two installments, we talked about simple DC motors and stepper motors. To recap, a DC motor is basically the simplest (think 'Lloyd' from the movie 'Dumb and Dumber') motor you can find. Simply apply voltage with sufficient current and it spins. You can reverse the spin direction by reversing voltage polarity, and you can control the speed by applying varying voltage levels or by sending short pulses of voltage. Stepper motors are a...'step up' (I hate puns) insofar as intelligence goes (think 'Harry' from 'Dumb and Dumber'). By which I mean, you can send them specific (countable) pulses and the motor will rotate in very predictable increments (steps). Steppers are natively 'open loop' but are oftem fitted with rotary encoders to provide position feedback. However...that position feedback is often an 'after the fact' reconcilliation on the number of steps commanded vs the number of pulses counted. It is not a 'tl_files/labsquad/blog_images/Motor Madness/servo-amp.jpgmonitor on the fly' feedback loop and that is by definition what a servo motor brings to the table.

In the most basic sense, a servo motor is a brushess DC motor fitted with a feedback sensor. The output of the feedback sensor is used to determine the final position of the motor. These devices can be very small (like hobby RC servos) or larger. In general, with increased size comes larger windings which enable more current and greater torque.   Dtl_files/labsquad/blog_images/Motor Madness/feedback.gifepending on the device the motor is attached to, you can expect to see a series of drive reduction gears or pulleys for even greater torque. Unlike hobby servos which have both gear reduction and circuitry embedded within their housings and use potentiometers for feedback, most industrial servo motors require a separate driver or control board that provides motor voltage and also monitors the encoder in real time.  The image to the left represents a simple hobby servo which nicely illustrates the feeback loop concept. Both the input signal and the output from the sensor (potentiometer, in this case) are feed into a comparator circuit. Because the gearing is built in and known relative to the gear ratios, the comparator can essentially decide when the motor needs to be stopped in order to achieve the commanded motion (so many pulses should equal so much resistance).  

The pulses sent to the motor are generally all the same voltage but number of pulses sent over time is what determines speed.  This is called Pulse Wideth Modulation (PWM).

Troubleshooting a servo motor is not easy.  If the motor and encoder are separate units, you can apply the rated voltage to motor (disconnect any pulley/belt or linkages first!!!).   Encoders are a bit trickier and we will cover them in a future tutorial.   You can try some basics like checking wiring connectors or blowing air the encoder to remove dust, dirt or grease.  Beyond that...you will need to crack open the case and hook up a scope to see what the pulse train coming from the encoders look like.  Most encoders are off the shelf devices and you can Google specs to compare with what you have.   This will at least help you zone in on the encoder or the controller/board it is plugged into.

 

June 28, 2013

By The Book

Did you ever work with a field service engineer who was just plain awesome...someone who always went above and beyond to ensure your success?  If so, you have probably asked yourself ''what would I do without them? ' Sadly, that hypothetical question, all too often, becomes reality.

For any number of reasons (some good, some not so good) people are transient.  As the old saying goes, no one is truly irreplaceable, so the best protection vendors can provide for their customers is to ensure that more common procedures are documented. For example, irrespective of who is doing the work, a preventative maintenance procedure should always be the same. Each step, every tool, replacement part, lubrication or adjustment should be captured in a document that can be used to cross train FSE's so that your instruments always receive consistent maintenance.

Whether you are working with a new FSE to support a new install, or existing instrument don't hesitate to ask to see the procedure they will be following. Motl_files/labsquad/blog_images/By The Book/BookHead.jpgst vendors won't share all the details, but many will let you have a glance and most will provide checklist that highlights the work to be done.

If a vendor cannot produce documents for common procedures (like a PM). before they commence their work you should be concerned. I'm not saying that you are about to be mis-treated, however how can you be certain that the requisite work will be accomplished if there is no guideline? You wouldn't conduct an assay without a documented procedure and you shouldn't allow anyone to work on your instruments without one either.

If they can't show you 'the book', then throw the book at them!

May 14, 2013

Every Picture Tells A Story, Don’t It?

A picture is worth a thousand words…so even at a reduced frame rate of 15FPS, one minute of video has to be worth 900,00 words.” – Me

For better or worse, advances in cellular communications arecameraphonemaking the once seemly impossible, trivial.  Specifically, I am referring to video communication.   Just about everyone has a ‘smartphone’ these days and it is hard to find a new phone that does not include a camera.   The resolution of these cameras is incredible (the Apple iPhone 5 = 8 MegaPixels) and product stunningly clear videos and images.

Video applications such as Apple’s FaceTime and Skype make face to face remote communications simple, fast and cheap.   For service organizations, this has providedthermal imagingfield based techs with an incredible tool for diagnosing instrument failures.    There are even iPhone apps that now allow users to perform thermal imaging (how cool is that…no pun intended)!  Let’s face it, the pressure these on-site techs feel when faced with a failed instrument can be enormous.  End user anxiety and a ticking clock only add to the stress.   The ability to ‘phone a friend’, point the phone at the instrument and have a real-time conversation about such failures brings an added dimension to peer review.

On the wired side, I have visited many research labs that have added low-cost USB or Ethernet cameras to their automation systems that allow them to monitor status remotely (many times from home, over a weekend or at night).   When combined with remote network access tools like PC Anywhere or LogMeIn, it is possible to deal with simple application errors and continue assays or applications that would otherwise had to wait for human to come into the lab and simple press a key.   Remote observation in this fashion requires network access and must always include IT departments to prevent unauthorized access.

Still, many labs will not allow non-employee cameras or video use within their labs.  Thisskype5is short-sighted (IMO), and unfortunate.   I understand the competitive nature of pharmaceutical or biotech research and the commercial implications of potentially providing competitors with a glimpse of a labs inner workings, but let’s face it…it would take a pretty savvy bunch of people to gleam something worthwhile from a phone camera.  Instrument failures that render an instrument ‘down’ are generally easier to diagnose and repair, however it the aberrant or irregular failures that could benefit immensely from remote observation.   Unless an instrument or system is under a service contract it can be very expensive to pay for a service tech to sit and watch for a reported failure (they always happen when the tech leaves, right?).

Most labs require non-disclosure agreements or safety training prior to granting non-employees access their labs and the time is well past to include the use of remote diagnostic tools, particularly cellular video in such protocols.   Perhaps seeing is believing?

April 29, 2013

Well Equipped…Part 1

Not every instrument failure requires a call to the manufacturer (OEM)  or an independent service organization (ISO).   Some simple and common failures can be rectified by just about anyone with some common sense and common tools.      Can’t help much with the common sense, but the tool part is a lot more straight forward.

***WARNING *** if you are not comfortable working with electricity please don’t mess around and call for help from you own facilities support folkdmms or and ISO.    If you kill yourself, don’t write me a nasty-gram from the afterlife.

The handheld DMM -  Digital Multimeter (aka the voltmeter).   The name voltmeter is used pretty loosely by a lot of tech’s and only describes one function of this device.  Very capable DMM’s can be found at the local hardware store for under US$50.     For a good tutorial click here.

Voltage - Most DMM’s can measure a wide range of AC or DC voltage.   One of the most common problems when you fire up an instrument and get nothing is no AC power.   Most US labs will operator on 110 or 200VAC.    A zero volt reading means you probably have popped a circuit breaker.  If the AC outlet you are plugged into had a ground fault button, try pressing the reset button and try again.   If you get voltage at the outlet, but no action on the instrument, you may have blown a fuse.  Not comfortable checking voltage?  Try plugging the instrument into a known good working outlet instead.   More knowledgeable techs can test DC voltages for printed circuit boards (PCB’s) inside the instrument.  Most instrument power supplies will convert AC power into lower voltage DC power and distribute it throughout the instruments.    Many PCB’s have incoming power marked at a connector coming from the main power supply.

Resistance -  Resistance is a measure of a devices ability to restrict the flow of electrons in a circuit.   If you crack open an instrument and see a charred component, it is likely a burned out resistor.   If you can still see the value of that resistor  (some have the value printed, others may use a series of colored bands), you can use the DMresistorM to verify if it is blown (open circuit, infinite resistance).   While you may be able to unsolder and replace this component, there is no guarantee that it will not blow again, as something else may have failed that caused too much current to flow thru it or too much voltage across it, causing it to cook.  If you come across a cooked resistor (or any other component), better to have someone replace the entire module.   Almost no FSE’s will spend time doing component level failure analysis as it is time consuming and ultimately more expensive.

Continuity – Some DMM’s allow you test for continuity (the closure of a circuit) that will result in a beeping signal.   No beep, no continuity.   A quick crossing of the probe leads will tell you what sound you are listening for.   This is what you will use to check you fuses or diode.    A diode allows current to flow in one direction only.   Diodes can be checked by reversing the leads across the component.  It should beep with the leads in one positreceptacleion, not beep in the other.  Some instruments have a main fuse as part of the receptacle that the AC cord plugs into.  MAKE SURE YOU UNPLUG THE INSTRUMENT BEFORE YOU DO THIS!!!   You can pop this open and check if the fuse is good or not.

Current -  Not really something I would advise a notice to attempt.   While voltage is measured across a load, current is measured in series with a load.   So, in order to check current, you need to break the circuit and use the DMM to measure current flowing through the meter as part of the circuit.   Lots of potential to hurt yourself here…leave to a professional.

Temperature – One of the features of many digital mulitmeters versus their older analog counterparts is the inclusion of a thermometer probe.   This can be very hand for diagnosing random failures that are related to run away heating problems -  a common example might be an intermittent cooling fan failure.   Try taking a cover off near the fan, tape the probe somwhere close and note the temperature during normal operation with fan running (and cover back on).   Then open it up, and unplug the fan (replace the cover) and monitor the temperature increase.  If you do this, be vigilant and don’t leave the instrument unattended.   You are looking not only for a temperature spike but also abhorrent instrument behavior…so you want to be able to shut it down ASAP.electicution

Okay, so there you have it.  Some basic things you can do with a DMM.  Just remember, when it comes to anything involving electricity, you should always consult with your facilities management.   Never perform electrical testing alone and never in the presence of liquids (especially flammables).   When in doubt…leave to someone in the know.

April 22, 2013

Crowd Sourcing Instrument Support?

Makers_3d_2Just finished Chris Anderson’s (editor Wired Magazine) new book, “Makers The New Industrial Revolution.”   In this book, Anderson does a great job of highlighting how the internet, 3D printing and crowd sourcing are enabling small batch manufacturing and prototyping.  He ultimately predicts a resurgence in US-based manufacturing and a diminished need for venture capital so often required to create companies and bring products to market.

Anyone who followed the recent investigation of the Boston Marathon bombing and the ensuing manhunt saw first-hand the power of the crowd.   Tens of thousands of web-connected citizens poured over photos and videos that would have taken federal and local police agencies weeks or months.  Within hours of releasing low quality photos, both suspects were identified and flushed out of the darkness.

Similarly, an article from The Scientist recently posited the idea of crowd sourcing drug discovery.  The thinking here is that waiting for new chemical entities to fail in Phase II studies is as unfair to patients as it is to the researchers who toil in redundant efforts.   The brute force approach of high throughput screening did little to bring new drugs to market meetupfaster.    Last year, a Harvard Med School student and budding entrepreneur named Shantanu Gaur started  a group at Meetup.com in an attempt to create a drug discovery collective.    His ethos is built around the mantra of  replacing “publish or perish” with “share or despair.”   For an industry that strives on peer review, overcoming IP issues that enable crowd thinking could provide the massively parallel efforts that will streamline understanding and treatment of diseases .

None of this is new to lab instrument support.   For a number of years now, users have been able to interact with each other as well as vendors and independent support organizations via forums such as LRIG and LabWrench.    Users  share similar experiences as hints and tips come from current or past employees of instrument manufacturers.   Some manufacturers have even created user forums to help support their products.    Still, a fair amount of knowledge about instruments is proprietary and closely protected by manufacturers.   This is understandable as many of these companies rely upon post-sales support revenue as an important component of their balance sheets.   The one thing missing from breaking this logjam is a more formal unification of the user community.  The power of the crowd lies within the sheer number of end-users for lab instruments.    Figure out a way for all users to speak with one voice and the leverage of the crowd will move the way instruments are supported.

But, how to do that is the subject of one of my next postings…

April 9, 2013

Is it safe?

It’s been over 35 years since the movie Marathon Man came out and I still have a fear of dentists.marathon-man   That imagery has nothing whatsoever to do with the topic of this blog, but the title reference was too good to pass up…

Everybody who works in a research lab no doubt has had to go through a mandatory lab safety course or certification.   Companies provide such training both to ensure the safety of their employees and processes as well as to avoid future litigation should an accident occur.    What is not always as clear is how to ensure the safety of visitors, or in the case of instrument support, Beyond providing lab coats and safety goggles, there are a couple of basic precautions that can be taken to ensure the well being of visitors and support techs;

1) Contact Person – all visitors should have the phone and email info for an employee who has been through a company approved safety training program.  Visitors should be required to seek out this person for any concerns they have prior to conducting their worChemical Spill Cleanupk, or in the event of an emergency.   Also, make sure you have the techs emergency contact (work and personal) info in the event that person requires medical attention.

2) Disclosure – Make sure you inform the tech of any biological or chemical hazards regarding the instruments.   Point out instrument decontamination certificates and give direction on how to dispose of wastes (chem wipes, q-tips, wear items, gloves, lab coats).  Also let them know your protocols for dealing with reagent spills or exposure.

3) Evacuation Instructions – Let the tech know how to exit the building inevacuation the event of an emergency.   In addition to typical lab accidents, in today’s world that could also include fire alarms, terrorist attacks, workplace violence).  Point out any per-determined ‘rally point’ once out of the building.   Also, let them know how to re-enter the building or sign out if they do not return so they can be accounted for.

4) Facilities Support – Never let a visiting tech hard wire equipment to your facilities electrical junction boxes.  If such a need arises, have your own knowledgeable facility personnel on hand to disconnect power and supervise all work.   Same goes for plumbing high pressure air lines or water lines.

5) Basic Safety Training – make sure the tech has received basic lab safety training from their employer.  Ask in advance for them to bring a certificate of such training, specific to the visiting tech.

With a little bit of extra consideration, it is  easy to ensure the safety of lab visitors.   And, it your service tech looks even remotely like Sir Laurence Oliver in the photo above, don’t be surprised if he or she incessantly asks,  “Is is safe yet?”

February 6, 2013

Support My…Asset

For all you self-maintainers out there, some great reference sites;

  1. Lab Wrench – a great Q & A site where folks can post questions and get the community of users, maintainers and current/former field service techs.   Not always the fastest way to get answers, but if your needs are not immediate well worth a try.
  2. LRIG Forum – The place to reach out to those in the know in the area lab automation.  Expect some commercial pitches from vendors from time to time but by and large the people who subscribe to this message board are really interested in helping each other out.  You will get lots of great guidance on how to make instruments interact (integrate), and a fair amount of troubleshooting expertise.
  3. LabX – Not really an interactive forum but you will find a number of companies that may be selling a product similar to yours.   Often these folks wind up servicing/refurbishing used products prior to listing them here and may be able to help you out.  If nothing else, it gives you an option for replacing your troubled instrument if you cannot repair it (use your device as a parts donor).
  4. Google – Seriously, did I really have to include a hot link to Google?   If you needed that, please put down any sharp tools and step away from the lab…   Believe it or not, Google can lead you to a number of academic research sites that store copies of user manuals, many of which include basic troubleshooting or replacement part numbers.

And of course, you can always contact us at info@TheLabSquad.com