March 2013

March 26, 2013

Nervous…System Support

My last post about standardization and open source scheduling software for integrated systems got me thinking more about the post-sales support sidon knottsde of those systems.

As many of you know, systems can be very expensive so end-users are making critical decisions on behalf of their employers, both on how well their money is being spent and what are reasonable expectations as to when the system will begin to show a return on that investment.    There is always concern about that ramp up time and the problems you may encounter along the way, so the question of warranty becomes very important to the lab manager or principal user of the system.

Most system integrators go through a very similar process regardless of who the end user is.   It generally all starts with a customer needs assessment, whereby a sales mabiocelnager (usually accompanied by an Application Scientist) asks a number of questions prior  to generating a system concept proposal.   While it may seem tedious to the end-user, (I know what I want, why can’t these people just give me their quote?) this is a critical step in ensuring long term success.   I have been involved in a number of situations where a customer had budgeted hundreds of thousands of dollars but could not provide a single manual method they wanted to automate.    Not good.

Weeks (more like months) after  the system is designed/proposed and agreed upon/purchased by the customer, a date is usually scheduled for a FAT (factory acceptance test) whereby the customer visits the integrator and goes through a “buy-off” checklist prior to shipment.  This buy-off is best done with beckman systemthe actual customer methods (minus real chemistry) to ensure that the system performs as agreed upon prior to shipment.   Remember, shipment means breaking down the system and packaging so that it can be “re-integrated” yet again upon arrival at the customer site whereupon it goes through the SAT (site acceptance test) which is basically the  same buy-off as the SAT, albeit with actual chemistry.   Once completed, you get a handshake (maybe a hug if it goes really well) and “TA-DA !”you own the system.

Most integrated systems come with a one year warranty.  This can mean different things to different integrators but in my experience, entails parts and labor only (travel is nostaublit included).  It also does not include operator induced failures like crashing a robot into an instrument.  In general, most systems include a fair number of third party instruments that the integrator does not manufacture and they don’t make a lot of money providing them.   These instruments come with their own warranties (usually 1 yr) and the integrator almost always passes these on to the end-user, acting as the first point of contact if a failure occurs.   Since the instruments can often reside at the integration firm for several weeks prior to FAT,  it is important for end-users to understand their warranty…’what is covered?’, for how long?’ and ‘when does the clock start ticking (upon shipment, acceptance)?’.

As mentioned in prior posts, an extended warranty for an integrated system can often cost 10-15% of the purchase price of the system.   Some integrators offer an incentive (discount) if you purchase such an extension with they system, or prior to expiration of the standard one year warranty.   Should you choose that option?

In short, the answer is no and I will tell you why.   Let’s assume we are talking about a $350K ELISA system that includes a robot mover, bar code reader, liquid handler, plate washer, ambient storage hotels and plate reader.    Those majorbeckman systemcomponents probably account for less than 50% of the price of that system.   The remainder is comprised of  things that don’t wear or break (system tables, enclosures, scheduling software, PC and …labor).   That last one is a biggie.    Integration is hard work and proper design, build, programming and testing prior to  SAT can include hundreds of person-hours.  That is commonly referred to as NRE or non-recurring engineering.   A warranty for such a system could cost upwards of $50K, or more (not including travel) but you really should only care about the instruments…not the other stuff.

So, if you are faced with a decision regarding extending the warranty of your integratedautomateitsystem…push back.  It’s pretty easy to determine the list price for each instrument in a system and request a contract that is based on just those costs.   You could also go directly to each manufacturer and request contract pricing on their product only.   If that is too time consuming or a management hassle you don’t need, you may want to reach out to one of the major MVS (multi-vendor services) providers (ThermoPEJohnson ControlsAgilentGE) or smaller ISO (independent services organizations) like The LabSquad.

Don’t be nervous about system support…be informed.

March 21, 2013

Is your instrument A-OK? If not, you may want to fix it PDQ (or you may be SOL) – LOL!

Is there an acronym for excessive use of acronyms?  It seems every industry has a long list of abbreviated jargon to capture the essence of what is important to their needs…and the life sciences industry is no exception.   Below are a just a few of the many acronyms that we encounter in our daily support of lab instruments and some brief definitions.

OEM – Original Equipment Manufacturer, generally the name of the company who sold the instrument.  However…there have been numerous mergers, acquisitions and bankruptcies over the past decade or more so your BioRad thermal cycler might be sitting on the bench with an older model with an MJ Research logo, or your Zymark Twister robot could now say Caliper Life Sciences (which is now Perkin Elmer)…you get the idea.

MVS – Multi-Vendor Services, a generic term that describes a single services provider who works across multiple vendor brands and product lines.   Giants include Unity Lab Services (Thermo), PE OneSourceAgilent, Johnson Controls and GE Healthcare.

ISO – Independent Service Organization, anyone other than the OEM.  Typically a local provider who works directly with customers or acts as a sub-contractor to MVS’s.

PM – Preventive Maintenance, sometimes called Periodic Maintenance.  A pro-active service performed prior to instrument failure designed to catch wear items before they escalate into more costly failures resulting in downtime.

MTBF – Mean Time Between Failure, a spec provided by some OEM’s that statistically predicts instrument reliability.   Failures are generally defined as abnormal occurrences that cannot be easily remedied by an operator and render the instrument or system inoperable.

MTTR- Mean Time To Repair, the average time required to repair a failed instrument or system.   Total number of failures / total time instrument/system is unavailable for intended operation.

IQ – Installation Qualification, documents that the correct instrument was received and installed properly. IQ can be performed by the user or the vendor (typically both during the site acceptance of a device or system).

OQ – Operational Qualification, tests that the instrument meets specifications in the user environment. OQ can be performed by the user or the vendor.   Some instrument include simple diagnostic routines that can be run by users, however a number of such tools are password protected or visible only to service personnel.

PQ – Performance Qualification, tests that the system performs the selected application correctly. PQ must be performed by the user, or in the case of some GxP or CLIA labs, a third party that provides hard data.

CV – Coefficient Of Variation (not your curriculum vitae, or resume),  a normalized measure of dispersion of a probability distribution.  Insofar as labs are concerned, this is generally a reference to unexpected errors across a microplate.   The resulting errors or outliers may often be traced back to liquid handling or pipetting performance.

GLP 0r GMP – Good Laboratory/Manufacturing Practices, a set of standard operating procedures (SOP’s) to ensure the uniformity, consistency, reliability, reproducibility, quality, and integrity of chemical (including pharmaceuticals) non-clinical safety tests.   Insofar as automation of assays is concerned, these SOP’s may contain periodic OQ & PQtesting of individual instruments, using NIST traceable tools and including analytical date (where applicable) .  Techs working in such labs may be required to show tool certificates prior to beginning work and produce validation results.

CLIA – Clinical Laboratory Improvement Amendments, any facility which performslaboratory testing on specimens derived from humans for the purpose of providing information for the diagnosis, prevention, or treatment of disease or impairment, and  for the assessment of health.   As with GxP above, CLIA labs follow stringent SOP’s regarding instrument support or verification, often requiring certified documentation (audit trails).

Did I forget any?  Don’t be shy, let me know.   TTFN!