September 6, 2017

Covered Under Warranty?

(Maybe...)

CRASH!!!!    Your 8-channel liquid handling robot arm just raked across the deck and one of the z-axis rods looks bent.   No problem, just call the manufacturer and have them come fix it, after all, it is still under warranty...right?   Well, maybe...

Most instrument warranties cover parts and labor but, that usually comes with the expectation that the failure is due to normal wear and tear, not abuse or unintended usage.  Using the liquid handler failure above as an example, the 8-channel arm likely got damaged because it failed to move to a safe Z-travel height before moving in X or Y.    But, was that because the arm failed to execute that command or because the programmer failed to instruct the arm to do so?   While a failure such as this might not occur in assays that have been running successfully for some period of time, they are more common when the user is still developing the assay or debugging it.   This type of failure could also occur because an operator forgot to retract the arm after some assay interruption or error condition.

Many OEM's (Original Equipment Manufacturer) will work with you to get the instrument back online and some may even be tolerant of such failures to the point of covering the associated costs under their warranty..but, you will most likely find there is a limit to their understanding.   If an instrument fails under normal usage, OEM's should and will cover repair costs but if an instrument fails again, or frequently due to operator error the OEM could and should charge for parts and labor and travel, even though the unit is under warranty.  Although such a stance would be unpopular for end-users, it is really no different than what you might experience in other areas of your life.  If you use your SUV to haul a boat that exceeds the vehicles gross towing rate you will probably damage your transmission or rear axle.  Should you expect Ford or GM pay for that?   The honest answer is, no.

Whether you bought the instrument new and are under the original warranty, or if you have purchased an extended warranty, make sure you understand just what kinds of failures are covered.   Ask up front.   Even if you purchase refurbished instruments, there is a limit to they nature of the failures that are covered (BTW - you should always insist on a minimum of a 6 month warranty on refurbished equipment). New or used, a warranty is a quality statement by the provider.   Buying instruments "AS IS" or with a "Money Back Guarantee" should set off alarm bells that the low price option that looks so attractive today, could prove to be a costly investment in the future.   Caveat Emptor...   

What options should you consider when the warranty expires?   That will be the subject of our next blog...

 

April 27, 2015

The Tip of The Day

Part One

tl_files/labsquad/blog_images/beckman tip.jpgBack in May of 2013, we talked about the use of third party tips on liquid handling robots.   Well, we got a lot of emails on that one as it seems a lot of people are looking for alternative tip providers, for a number of reasons...but mostly cost savings. 

We heard a lot of stories regarding OEM's who threatened to void instrument warranties or even refuse to service instruments that use third party tips.   Is that legal?  Probably not but, it certainly is unwise and I would imagine that is not a company policy so much as it is a regional sales rep or service engineer who does not want to lose a lucrative revenue stream.  

Having worked on the supplier side (at Caliper Life Sciences, now part of Perkin Elmer),  I can tell you that most OEM's want end users to buy their tips...and only their tips.   Why is that?  Well, the biggest reason is that they have invested heavily in the creation of precision injection molds and the logistics required to stock and ship tips.  This is not inconsequential and often explains why OEM tips tend to cost more than third party tips.   Even when the mold costs have been amortized, stocking and distributing tips is a costly endeavor, as is ongoing quality monitoring.

So, you might be asking, how could a third party tip cause an instrument to fail?  The only conceivable scenarios I can think of are:

a) head crashes due to physical differences or
b) 0-rings on mandrels that might wear or deform due to physical differences (polymers or dimensions).

Other than that, it's really a red-herring argument.   Our sister division,  AssayGuru has performed performance analysis on a number of third party tips for various manufacturers and compared both pipetting accuracy and mechanical reliability.  These tests were conducted on various brands of liquid handling robots using both third party and OEM tips.   In most cases, there have been no issues and the third party manufacturers we have worked with were eager to find and correct any flaws, prior to launching their tip products.

In my next post, I will detail one such manufacturer who has impressed us so much that we have actually created a new partnership...stay tuned.

 

August 7, 2013

Lab Instrument Support Survey

New MVS Survey

Oh behalf of HTStec, The LabSquad is pleased to inform you that their latest survey titled "LAB INSTRUMENT SUPPORT STRATEGIES TRENDS 2013" is now underway. 

"Proper maitl_files/labsquad/blog_images/Survey/Survey/survey.jpgntenance of laboratory instrumentation is an important consideration to ensure that lab assets remain available to researchers. Minimizing downtime makes the research process more efficient. A variety of support options are available from original equipment manufacturers (OEM), small third party independent service organizations (ISO), large multi-vendor service (MVS) providers and internal support staffs. Understanding the needs of lab users is essential for service providers to ensure customer success."

If you count on your lab instruments being in 'research ready; condition, please take a moment and fill out this most important survey.    JUST CLICK HERE

June 3, 2013

Good Reads about Multi-Vendor Support

Thought I would share a few articles and interviews that talk about Asset Management and Multi-Vendor Service support.

Next Generation Pharmaceutical-Outsourcing Asset Management,  Bob Moore – GE Healthcare, interview

Lab Manager Magazine – The Evolving Service Model   ; Good overview of service offerings from GE, Agilent, PE and Thermo Fisher.

BioScience Technology.com – Managing More Lab Assets

GEN – Lab-Asset Management Gets Smarter; older article (circa 2008) but shows that Asset Mgt within life sciences has been around for awhile.

May 21, 2013

Separation Anxiety?

Most labs have used floor mount or bench top centrifuges for separation based assays for decades.  Whether spinning samples to remove air bubbles, spinning down cellular debris or isolating supernatent, there are numerous manual access centrifuges on the market, but when it comes to automation, the choices are limited.

For a number of years, Agilent (formerly Velocity11) has offered the compact VSpin.  VSpin has a two position rotor with buckets for std microplates.   It can spiV11_prod_big_vspinn up to 300o rpm/ 1000g and has an automated door that allows direct access to plates using an offset robot gripper.   Units can be stacked on top of each other for increased  use of vertical workspace.  The Optional Access2 loader can also grab the plate and present it externally to a liquid handler gripper or top loading plate mover like Twister2 or KiNEDx.

Hettich also provides a larger unit called the Rotanta 460 which can accommodate 4 plates at speeds up to Hettich_Rotanta_46_RSC_Front_Hatch6200prm,  but is a bit more of a challenge to integrate as the robot gripper fingers need to reach into the unit from the top.  I have seen this done with Mitsubishi and Staubli robots and Tecan actually integrates this unit under an EVO liquid handler accessible via an open locator in the deck.Ixion3

Sias’s Ixion is a compact unit, similar in size to the VSpin, however plate access (total of two) is through the top just like the Rotanta and can spin up to 2000rpm.   This unit integrates nicely with Sias’ Xantus liquid handlers.

Finally, BioNex offers the HiG centrifuge which can also spin two plates.  The bright orange color makes this unit hard to ignore…and a closer look shows that this unit may be BioNex HiGthe best of the bunch.   With an automated lid that retracts from the top, the HiG does not need a plate loader like the VSpin as plates can be accessed by just about any robot gripper.   At 5000g, BioNex claims this unit to be the fastest robot accessible centrifuge available.

Maintenance requirements for each of these devices is similar.   All include high-speed motors so proper ventilation is a must.   Bearings must be greased, sensors cleaned and pneumatics (door opening, plate loaders) checked for leaks.   Additionally, rotors and buckets should be checked for cracks or other signs of wear.   As noted in previous blogs, rotational speeds can be verified using a digital tachometer but you may need to remove covers to gain access to the rotor (kids, don’t try this at home…call a professional).   As always, if you ignore that last piece of advice, don’t come crying to me when your friends make fun of you because you have a mircrotitre plate permanently embedded in your cheek…

April 12, 2013

Who’s Minding The Store?

It has been said that the French love Jerry Lewis.  Books have even been written about it (well, at least one book).store   I would not presume to question French culture…however even Jerry’s old partner Dean Martin sang “Everbody loves somebody sometime…”

Still, when French scientists need to automate ‘cell culture‘ and other time or temperature sensitive assays, they (and researchers from many nations) require automated storage devices (…all that for a ‘store’ reference?)

One of the more common instruments that enable extended walkaway time (the ability to automate multiple plate runs of any given assay) is the automated incubator.  Actually, the term incubator is a bit on a misnomer as these “plate hotels” can have a variety of temperature and/or humidity ranges that enable their use in a wide variety of assays.  To further complicate that definition, said plate hotels can also be used to store plate lids, tip boxes and tube racks.

Ambient – Perhaps the most common of all plate storage devices, ambient hotels can be as simple the removable storage racks found on plate mover robots such as theCaliper/PE Twistetwister iir II or the PAA KiNEDx or even dedicated plate stackers like the Thermo FisherRapidStak.   Many plate reader companies (Molecular DevicesBioTekBMG Labtech…etc) also offer dedicated ambient stacker options.   Additionally, Liconic,  , Agilent,Hi-Res Bio and Thermo Fisher(Kendro/Hereaus) also offer stacker hotels with built-in elevators/plate presenters that are also used in their temp/humidity controlled devices.   Hi-Res Bio also offers the PicoServe for robot arm access.  For the most part, users only need to consider if their assays require random access of individual plates or stacked storage (one plate on top on another).  Stacking plate racks follow what is known as a LIFO or Last In, First Out paradigm.  This is great for empty plates that will be fed into a system for simple tasks such as plate replication or reformatting.    Some folks even use this as a means of eliminating lids, as the plate above acts as the lid for the plate below – top plate is a blank).  Random access racks (individual plate holders) are great for assays where you need to treat each plate uniquely such as hit picking or ELISA.  Plate racks come in portrait or landscape orientation and some devices allow for bar code verification or delidding options.

Heated/Cooling – Options start to become more limited when you need environmental control.   Small batch options include self-contained single plate devices froIncubator_Family-09-2011_02_056bb39b14InHeco, which can be stacked on top of each other as well as recirculating fluid locaThermal-Plate-Stacker-Part-STKRtors fromMéCour.  MéCour also offers a recirculating fluid jacket for Twister II racks.  For more than a handful of plates, there are three well established providers;

  • Liconic – For well over a decade, this little juggernaut from Lichtenstein has created a formidable offering of products, all designed for liquid handler or robot manipulator access.   They also offer ambient hotels that utilize many of the core components used in their environmental models.  The range of products covers just about any application you can come up with!  Just a word of caution, depending upon the age of the instrument, you may find that there are design variations that can make post sales support challenging.
  • Thermo Fisher -Thermo acquired Kendro in 2005 and carried on the Cytomat/Heraeus (and Sorvall) product lines.   Originally, the Heraeus products were co-developed with Liconic and shared many common components and needs, but more recepicoservent products are of a completely new design.
  • Hi-Res Biosolutions – a relative newcomer to storage, but a very impressive line of products ranging from the 8 position Plate Chill cooled racks to high-capacity plate or tube storage.

End users, OEM’s  and system integrators have a wide variety of choices when it comes to extending assay walk-away time.   The French may indeed love Jerry Lewis but researchers love having time to perform higher value tasks due to the reliability of plate storage devices.

April 3, 2013

Have I Got A Tip For You…

the-graduate

“I want to say one word to you. Just one word.  Are you listening ? Plastics.” - The Graduate, 1967

Automated liquid handlers are very quickly (if not already there) becoming commodity products.   While every liquid handling manufacturer claims certain features or twists on how they do things, ultimately they all do pretty much the same thing…suck and spit (keep it clean people, we’re running a blog here…)  One sure sign of ‘commoditization’ is when third parties begin to offer accessories that compliment or compete with a particular product and in the case of liquid handlers,  that most commonly means disposable pipette tips.

Wondering if there any performance or reliability issues associated with the use of third party tips? tips To be sure, original equipment manufacturers (OEM’s) test and warranty their products using tips that they manufacture.   It is reasonable then for them to discourage the use of third-party tips insofar as performance guarantees are concerned.   Additionally, most of the OEM’s have made significant investments in the creation and maintenance of plastic injection molds that they or their supplier uses to stamp out their tips… so there is of course an understandable financial desire for them to want customers to purchase only OEM tips.

Insofar as periodic maintenance is concerned, end users should note that if they are performing routing CV checks (either gravimetrically or via a dye test), the tester needs to consider that differences in accuracy or precision may be affected by badly formed tips but that holds true regardless of who makes the tip.

However, it is not reasonable for an OEM to claim that the use of non-OEM tips “might” void the equipment’s warranty.  That’s a bit of a scare tactic that upon further reflection speaks more directly to lost consumable revenue than the fear of tip induced hardware failure.   I mean, if a tip gets stuck on a mandrel instead of getting shucked, I guess yeah, you could experience a crash that could damage the liquid handler.  Crashes do happen but such occurrences are rare once a tip is in production as most of the third-party providers I have dealt with have very stringent QC programs.    If you want to err on the side of caution, consider using OEM tips for new purchases and evaluate third-party tips once the warranty expires (usually 1yr).

Looking for alternative tip providers;

Corning/Axygen -   Agilent/V11, Beckman Coulter, BioTek, Caliper/PE, Dynamic Devices, Hamilton, Molecular Devices, Tecan, Qiagen

Labcon - Beckman Coulter

Phenix Research – Agilent/V11, Beckman Coulter,  Caliper/PE,  Eppendorf, Molecular Devices, Tecan, Qiagen

Thermo Fisher/Molecular BioProducts – Agilent/V11, Beckman Coulter, BioTek, Caliper/PE,  Molecular Devices, Tecan, Qiagen

March 26, 2013

Nervous…System Support

My last post about standardization and open source scheduling software for integrated systems got me thinking more about the post-sales support sidon knottsde of those systems.

As many of you know, systems can be very expensive so end-users are making critical decisions on behalf of their employers, both on how well their money is being spent and what are reasonable expectations as to when the system will begin to show a return on that investment.    There is always concern about that ramp up time and the problems you may encounter along the way, so the question of warranty becomes very important to the lab manager or principal user of the system.

Most system integrators go through a very similar process regardless of who the end user is.   It generally all starts with a customer needs assessment, whereby a sales mabiocelnager (usually accompanied by an Application Scientist) asks a number of questions prior  to generating a system concept proposal.   While it may seem tedious to the end-user, (I know what I want, why can’t these people just give me their quote?) this is a critical step in ensuring long term success.   I have been involved in a number of situations where a customer had budgeted hundreds of thousands of dollars but could not provide a single manual method they wanted to automate.    Not good.

Weeks (more like months) after  the system is designed/proposed and agreed upon/purchased by the customer, a date is usually scheduled for a FAT (factory acceptance test) whereby the customer visits the integrator and goes through a “buy-off” checklist prior to shipment.  This buy-off is best done with beckman systemthe actual customer methods (minus real chemistry) to ensure that the system performs as agreed upon prior to shipment.   Remember, shipment means breaking down the system and packaging so that it can be “re-integrated” yet again upon arrival at the customer site whereupon it goes through the SAT (site acceptance test) which is basically the  same buy-off as the SAT, albeit with actual chemistry.   Once completed, you get a handshake (maybe a hug if it goes really well) and “TA-DA !”you own the system.

Most integrated systems come with a one year warranty.  This can mean different things to different integrators but in my experience, entails parts and labor only (travel is nostaublit included).  It also does not include operator induced failures like crashing a robot into an instrument.  In general, most systems include a fair number of third party instruments that the integrator does not manufacture and they don’t make a lot of money providing them.   These instruments come with their own warranties (usually 1 yr) and the integrator almost always passes these on to the end-user, acting as the first point of contact if a failure occurs.   Since the instruments can often reside at the integration firm for several weeks prior to FAT,  it is important for end-users to understand their warranty…’what is covered?’, for how long?’ and ‘when does the clock start ticking (upon shipment, acceptance)?’.

As mentioned in prior posts, an extended warranty for an integrated system can often cost 10-15% of the purchase price of the system.   Some integrators offer an incentive (discount) if you purchase such an extension with they system, or prior to expiration of the standard one year warranty.   Should you choose that option?

In short, the answer is no and I will tell you why.   Let’s assume we are talking about a $350K ELISA system that includes a robot mover, bar code reader, liquid handler, plate washer, ambient storage hotels and plate reader.    Those majorbeckman systemcomponents probably account for less than 50% of the price of that system.   The remainder is comprised of  things that don’t wear or break (system tables, enclosures, scheduling software, PC and …labor).   That last one is a biggie.    Integration is hard work and proper design, build, programming and testing prior to  SAT can include hundreds of person-hours.  That is commonly referred to as NRE or non-recurring engineering.   A warranty for such a system could cost upwards of $50K, or more (not including travel) but you really should only care about the instruments…not the other stuff.

So, if you are faced with a decision regarding extending the warranty of your integratedautomateitsystem…push back.  It’s pretty easy to determine the list price for each instrument in a system and request a contract that is based on just those costs.   You could also go directly to each manufacturer and request contract pricing on their product only.   If that is too time consuming or a management hassle you don’t need, you may want to reach out to one of the major MVS (multi-vendor services) providers (ThermoPEJohnson ControlsAgilentGE) or smaller ISO (independent services organizations) like The LabSquad.

Don’t be nervous about system support…be informed.

March 22, 2013

SiLA Love Songs

Time to talogo_silake a break from talking about instrument support and wax philosophically about a bigger support challenge – integrated systems.    A colleague asked me my opinion of the SiLA, a consortium that is creating standards for lab automation instrument interfaces.

As I understand it, the folks behind SiLA have a business model that will define these interface standards and then presumably charge instrument manufactures for the privilege of claiming “SiLA Compliant,” or some such declaration.    I have to admit that my knowledge of this model is sketchy at best, and the SiLA website does not really lend much insight.

This seems a bit like putting the cart before the horse to me.  That is to say, the instrument interfaces are fairly useless without a higher level scheduling software that manages assay workflow, instrument status and data.

In the 1980′s and 90′s, there were many such products from well establishepolarad system integrators such as  RoboCon (acquired by CRS Robotics), CRS Robotics (acquired by Thermo Electron, who merged with Fisher Scientific),  Scitec (acquired by Zymark), Zymark (acquired by Caliper, who merged with Perkin Elmer) and Velocity11 (acquired by Agielnt) — do you sense a theme here?  All this M&A activity happened during the HTS and uHTS craze.  Once that goldrush ran it’s course, it became clear that system integration is difficult in a public company.   It’s hard to take a 16-20 week design/build/install model and cram in into a quarterly revenue model.  Systems needed to become smaller, more standardized and less expensive.

Nevertheless, each integration company created their own assay management and scheduling software and wrote their own libraries of instrument interfaces.  Hundreds of systemsMicrosoft.Net were installed and not a single one required the involvement of SiLA or any other instrument standard.   One common thread that enabled each of these software’s to succeed was the widespread adoption of Microsoft’s COM, OLE and eventually ActiveX  and .NET frameworks.  As long as instrument manufactures included automation “hooks” based on the MS framework, integrators had little trouble creating robust instrument interfaces.   It’s really not that complicated, as you really just need to be able to initialize, start, stop and report error status for most instruments.   Data (from readers primarily) was generally a secondary consideration and not part of the scheduling paradigm.

So flash forward a few years and there are remarkably fewer pure integration companies left.   Caliper/PE and V11/Agilent are still out there, but not perhaps as visible as they once were.   Thermo Fisher now has a more limited presence as well.   To be sure, companies like Beckman, Tecan and Hamilton still build systems but they are primarily liquid handling companies first, integrators second.   Really only HiRes Biosolutions,Process Analysis & Automation Ltd. or PAA and Hudson Robotics still fit the pure integrator definition.

It would seem to me that without an Open Source scheduler software standard, there isn’t much need for an Open Source instrument interface standard.    Each of the companies mentioned above already have significant investments in creating their device libraries.  What is the incentive for them to abandon those interfaces (many of which they charge for) in favor of the SiLA standard?   I’m not saying they wouldn’t but I’d like to hear a good business argument for it, other than fear of someone else doing it.   In fact,  I would imagine that an Open Source scheduler could exist nicely even without SiLA, much as the proprietary schedulers have existed.    As users create interfaces to various instruments, they would put them into the public domain for anyone to use…no SiLA required.

A few years back, a number of folks in the Cambridge, MA community came together and started to discuss an Open Source scheduler.    About two years ago,  Caliper donated it’s CLARA/iLink source code to the University of Wales, in Aberystwyth which can still be found on Source Forge under the name  LABUX.   Last fall, two MIT students created a similar effort called Clarity.   I have not followed either of these endeavors closely, but it seems to me that they could either solidify SiLA or bury it.

My opinion?  When I ran the system business at Caliper, prior to the PE merger, I was not a big fan of Open Source scheduling.   I knew the investment we had made in our own software and although I knew it had it’s limitations, it was enabling technology that created significant revenue.   Still, I saw the LABUX initiative as a way of testing the waters.    If an open source scheduling standard did emerge, better that it be something we were familiar with.     Additionally, if we could build systems and not have to maintain the software staff to maintain the scheduling software, we could in theory be more profitable (that public corporation thing again).   Now, two years removed from that role,  there does not appear to be  solid consensus on Open Source scheduling or interfaces.    I have no stake in the game anymore, so perhaps I can now be a bit more candid and say.  I am a big fan of the pure integration model, so I am rooting for HiRes, PAA and Hudson!   I still don’t get the whole SiLA thing.   Seems a bit… SiLLY to me.

March 21, 2013

Is your instrument A-OK? If not, you may want to fix it PDQ (or you may be SOL) – LOL!

Is there an acronym for excessive use of acronyms?  It seems every industry has a long list of abbreviated jargon to capture the essence of what is important to their needs…and the life sciences industry is no exception.   Below are a just a few of the many acronyms that we encounter in our daily support of lab instruments and some brief definitions.

OEM – Original Equipment Manufacturer, generally the name of the company who sold the instrument.  However…there have been numerous mergers, acquisitions and bankruptcies over the past decade or more so your BioRad thermal cycler might be sitting on the bench with an older model with an MJ Research logo, or your Zymark Twister robot could now say Caliper Life Sciences (which is now Perkin Elmer)…you get the idea.

MVS – Multi-Vendor Services, a generic term that describes a single services provider who works across multiple vendor brands and product lines.   Giants include Unity Lab Services (Thermo), PE OneSourceAgilent, Johnson Controls and GE Healthcare.

ISO – Independent Service Organization, anyone other than the OEM.  Typically a local provider who works directly with customers or acts as a sub-contractor to MVS’s.

PM – Preventive Maintenance, sometimes called Periodic Maintenance.  A pro-active service performed prior to instrument failure designed to catch wear items before they escalate into more costly failures resulting in downtime.

MTBF – Mean Time Between Failure, a spec provided by some OEM’s that statistically predicts instrument reliability.   Failures are generally defined as abnormal occurrences that cannot be easily remedied by an operator and render the instrument or system inoperable.

MTTR- Mean Time To Repair, the average time required to repair a failed instrument or system.   Total number of failures / total time instrument/system is unavailable for intended operation.

IQ – Installation Qualification, documents that the correct instrument was received and installed properly. IQ can be performed by the user or the vendor (typically both during the site acceptance of a device or system).

OQ – Operational Qualification, tests that the instrument meets specifications in the user environment. OQ can be performed by the user or the vendor.   Some instrument include simple diagnostic routines that can be run by users, however a number of such tools are password protected or visible only to service personnel.

PQ – Performance Qualification, tests that the system performs the selected application correctly. PQ must be performed by the user, or in the case of some GxP or CLIA labs, a third party that provides hard data.

CV – Coefficient Of Variation (not your curriculum vitae, or resume),  a normalized measure of dispersion of a probability distribution.  Insofar as labs are concerned, this is generally a reference to unexpected errors across a microplate.   The resulting errors or outliers may often be traced back to liquid handling or pipetting performance.

GLP 0r GMP – Good Laboratory/Manufacturing Practices, a set of standard operating procedures (SOP’s) to ensure the uniformity, consistency, reliability, reproducibility, quality, and integrity of chemical (including pharmaceuticals) non-clinical safety tests.   Insofar as automation of assays is concerned, these SOP’s may contain periodic OQ & PQtesting of individual instruments, using NIST traceable tools and including analytical date (where applicable) .  Techs working in such labs may be required to show tool certificates prior to beginning work and produce validation results.

CLIA – Clinical Laboratory Improvement Amendments, any facility which performslaboratory testing on specimens derived from humans for the purpose of providing information for the diagnosis, prevention, or treatment of disease or impairment, and  for the assessment of health.   As with GxP above, CLIA labs follow stringent SOP’s regarding instrument support or verification, often requiring certified documentation (audit trails).

Did I forget any?  Don’t be shy, let me know.   TTFN!